RELATIVITY AND COSMOLOGY 1
Solutions to Problem Set 5 Fall 2023

1. Christoffel Symbols for a Diagonal Metric

(a) From the definition, we have
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(b) As before, the only non-zero element is p = A
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(c) Same reasoning here
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2. Geodesics

(a) The geodesic equations with affine parameter A read
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Making a generic change of variable A — «(A) and using the chain rule, gives
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(b) The vector tangent to the geodesic x*(A) has components
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which is the geodesic equation.

3. Geodesics on S2

(a) To write down the geodesic equations explicitly, we need to first compute the
Christoffel symbols. This is a diagonal metric, so we can use the formulae derived
in Problem 1. We find that the only non-vanishing Christoffel symbols are
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where we used the fact that the metric elements in these coordinates only depend
on 6, so derivatives with respect to ¢ immediately vanish. The geodesic equation
has a free index, which we can choose to be 6§ or ¢. We thus get two equations
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The non-vanishing terms are thus
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Defining 2%(\) = 0(\) and 2(\) = ¢()\) and substituting the expressions of the
Christoffels that we computed, we get
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where dots represent derivatives with respect to A.



(b)

If we impose constant longitude ¢ = ¢, the geodesic equations reduce to
=0, (15)

meaning that any curve 8(\) = uA+ 6y with u and 6y constants is a good geodesic.If
instead we impose 6 = 0y the equation becomes
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That means that @ = 0y has solutions for any curve ¢p(A) = uX + ¢o only if
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corresponding to the poles and the equator. At the poles these geodesics would
represent points, so the only real extended geodesic of constant latitude 6 = 6, is
the equator.

A vector V is parallel transported along a curve z¥(\) when
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Again this corresponds to two equations for the two choices of the free index v. We
want to parallel transport this vector on a curve of constant longitude, meaning

0 = 6y . The equations become

P (ov?e 0 _
6 (%7 +T5,V°) =0

¢ @0 -
where we used that derivatives of # vanish. Since we want to consider general ¢(\),
the differential equations on the components of V' reduce to
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Given that the initial conditions for the vector components are V# = (1,0) we get
initial conditions for its derivatives

ave -0
8¢¢ =0 ) | (21>
ag;‘ + cot 90 =0

$=0

At this point we could put (20) on Mathematica and find the solution. Another
option is to find decoupled equations by, for example, deriving the first equation
with respect to ¢ and substituting % from the second one and vice versa. We get
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These are decoupled harmonic oscillators with frequency cosfy. General solutions

are
V9 (¢) = Acos(¢cosby) + Bsin(¢cosby), (23)
V9(¢) = C cos(¢cosby) + Dsin(¢cosby).
Imposing the initial conditions of V# and its derivatives, we get
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Thus, parallel transporting a vector with initial components (1,0) around a circle
of constant latitude 6 = 6, gives a vector of components
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We can verify again that 6 = 7 is a geodesic: when we plug in this value, we get
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as it should, since a vector that is parallel transported along a geodesic on a closed
circuit preserves its components.

4. Divergence and Laplacian

(a) Let us start with the explicit expression of the covariant derivative
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where by definition
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coming from differentiating the common identity log det M = Trlog M, one gets
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bringing the expression to the desired form
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(b) The identity for the Laplacian trivially follows from setting V#* = V*f = ¢"0, f



