
RELATIVITY AND COSMOLOGY I
Solutions to Problem Set 5 Fall 2023

1. Christoffel Symbols for a Diagonal Metric

(a) From the definition, we have

Γλ̄
µ̄ν̄ = 1

2gλ̄ρ(∂µ̄gν̄ρ + ∂ν̄gρµ̄ − ∂ρgµ̄ν̄) . (1)

If the metric is diagonal gµ̄ν̄ = 0 and the only non-zero element of gλ̄ρ is gλ̄λ̄, fixing
ρ = λ̄.

Γλ̄
µ̄ν̄ = 1

2gλ̄λ̄(∂µ̄gν̄λ̄ + ∂ν̄gλ̄µ̄) = 0 . (2)

(b) As before, the only non-zero element is ρ = λ̄

Γλ̄
µ̄µ̄ = 1

2gλ̄λ̄(∂µ̄gµ̄λ̄ + ∂µ̄gλ̄µ̄ − ∂λ̄gµ̄µ̄) = − 1
2gλ̄λ̄

∂λ̄gµ̄µ̄ . (3)

(c) Same reasoning here

Γλ̄
µ̄λ̄ = 1

2gλ̄λ̄(∂µ̄gλ̄λ̄ + ∂λ̄gλ̄µ̄ − ∂λ̄gµ̄λ̄) = 1
2gλ̄λ̄

∂µ̄gλ̄λ̄ = ∂µ̄

(
ln
√

|gλ̄λ̄|
)

. (4)

(d)
Γλ̄

λ̄λ̄ = 1
2gλ̄λ̄(∂λ̄gλ̄λ̄ + ∂λ̄gλ̄λ̄ − ∂λ̄gλ̄λ̄) = 1

2gλ̄λ̄

∂λ̄gλ̄λ̄ = ∂λ̄

(
ln
√

|gλ̄λ̄|
)

. (5)

2. Geodesics

(a) The geodesic equations with affine parameter λ read
d2xµ

dλ2 + Γµ
ρσ

dxρ

dλ

dxσ

dλ
= 0 . (6)

Making a generic change of variable λ → α(λ) and using the chain rule, gives

dα

dλ

d

dα

(
dα

dλ

dxµ

dα

)
+ Γµ

ρσ

(
dα

dλ

)2
dxρ

dα

dxσ

dα
= 0(

dα

dλ

)2
d2xµ

dα2 + d2α

dλ2
dxµ

dα
+ Γµ

ρσ

(
dα

dλ

)2
dxρ

dα

dxσ

dα
= 0

d2xµ

dα2 + Γµ
ρσ

dxρ

dα

dxσ

dα
= −

(
dα

dλ

)−2
d2α

dλ2
dxµ

dα
.

(7)

We have thus found that

f(α) = −
(

dα

dλ

)−2
d2α

dλ2 . (8)
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(b) The vector tangent to the geodesic xµ(λ) has components

V µ = dxµ

dλ
. (9)

We can thus write
V µ∇µV ν = 0

dxµ

dλ

(
∂µ

dxν

dλ
+ Γν

µρ

dxρ

dλ

)
= 0

dxµ

dλ
∂µ

dxν

dλ
+ Γν

µρ

dxµ

dλ

dxρ

dλ
= 0

d2xν

dλ2 + Γν
µρ

dxµ

dλ

dxρ

dλ
= 0 ,

(10)

which is the geodesic equation.

3. Geodesics on S2

(a) To write down the geodesic equations explicitly, we need to first compute the
Christoffel symbols. This is a diagonal metric, so we can use the formulae derived
in Problem 1. We find that the only non-vanishing Christoffel symbols are

Γθ
φφ = − 1

2gθθ

∂θgφφ = −1
2∂θ sin2 θ = − sin θ cos θ

Γφ
φθ =∂θ

(
ln
√

|gφφ|
)

= ∂θ

(
ln
√

| sin2 θ|
)

= cos θ

sin θ
= Γφ

θφ .

(11)

where we used the fact that the metric elements in these coordinates only depend
on θ, so derivatives with respect to φ immediately vanish. The geodesic equation
has a free index, which we can choose to be θ or φ . We thus get two equations

d2xθ

dλ2 + Γθ
µρ

dxµ

dλ
dxρ

dλ
= 0

d2xφ

dλ2 + Γφ
µρ

dxµ

dλ
dxρ

dλ
= 0

(12)

The non-vanishing terms are thusd2xθ

dλ2 + Γθ
φφ

(
dxφ

dλ

)2
= 0

d2xφ

dλ2 + 2Γφ
θφ

dxθ

dλ
dxφ

dλ
= 0

. (13)

Defining xθ(λ) ≡ θ(λ) and xφ(λ) ≡ φ(λ) and substituting the expressions of the
Christoffels that we computed, we getθ̈ − sin θ cos θφ̇2 = 0

φ̈ + 2 cot θ θ̇φ̇ = 0
, (14)

where dots represent derivatives with respect to λ.
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(b) If we impose constant longitude φ = φ0 the geodesic equations reduce to

θ̈ = 0 , (15)

meaning that any curve θ(λ) = uλ+θ0 with u and θ0 constants is a good geodesic.If
instead we impose θ = θ0 the equation becomessin θ0 cos θ0φ̇

2 = 0
φ̈ = 0

. (16)

That means that θ = θ0 has solutions for any curve φ(λ) = uλ + φ0 only if

θ0 = 0,
π

2 , π , (17)

corresponding to the poles and the equator. At the poles these geodesics would
represent points, so the only real extended geodesic of constant latitude θ = θ0 is
the equator.

(c) A vector V is parallel transported along a curve xν(λ) when

dxµ

dλ
∇µV ν = 0 . (18)

Again this corresponds to two equations for the two choices of the free index ν. We
want to parallel transport this vector on a curve of constant longitude, meaning
θ = θ0 . The equations becomeφ̇

(
∂V θ

∂φ
+ Γθ

φφV φ
)

= 0
φ̇
(

∂V φ

∂φ
+ Γφ

φθV
θ
)

= 0 ,
(19)

where we used that derivatives of θ vanish. Since we want to consider general φ(λ),
the differential equations on the components of V reduce to

∂V θ

∂φ
− sin θ0 cos θ0V

φ = 0 ,
∂V φ

∂φ
+ cot θ0V

θ = 0
. (20)

Given that the initial conditions for the vector components are V µ = (1, 0) we get
initial conditions for its derivatives

∂V θ

∂φ

∣∣∣∣
φ=0

= 0 ,

∂V φ

∂φ

∣∣∣∣
φ=0

+ cot θ0 = 0
. (21)

At this point we could put (20) on Mathematica and find the solution. Another
option is to find decoupled equations by, for example, deriving the first equation
with respect to φ and substituting ∂V φ

∂φ
from the second one and vice versa. We get


∂2V θ

∂φ2 + cos2 θ0V
θ = 0 ,

∂2V φ

∂φ2 + cos2 θ0V
φ = 0

. (22)
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These are decoupled harmonic oscillators with frequency cos θ0. General solutions
are V θ(φ) = A cos(φ cos θ0) + B sin(φ cos θ0) ,

V φ(φ) = C cos(φ cos θ0) + D sin(φ cos θ0) .
. (23)

Imposing the initial conditions of V µ and its derivatives, we getV θ(φ) = cos(φ cos θ0) ,

V φ(φ) = − sin(φ cos θ0)
sin θ0

.
(24)

Thus, parallel transporting a vector with initial components (1, 0) around a circle
of constant latitude θ = θ0 gives a vector of componentsV θ(2π) = cos(2π cos θ0) ,

V φ(2π) = − sin(2π cos θ0)
sin θ0

.
(25)

We can verify again that θ0 = π
2 is a geodesic: when we plug in this value, we getV θ(2π) = 1 ,

V φ(2π) = 0 ,
(26)

as it should, since a vector that is parallel transported along a geodesic on a closed
circuit preserves its components.

4. Divergence and Laplacian

(a) Let us start with the explicit expression of the covariant derivative

∇µV µ = ∂µV µ + Γµ
µνV ν , (27)

where by definition

Γµ
µν = 1

2gµα (∂µgαν + ∂νgαµ − ∂αgµν) = 1
2gµα∂νgαµ . (28)

This, in terms of matrices is
1
2Tr

(
g−1∂νg

)
(29)

From the identity
Tr
(
M−1∂νM

)
= ∂ν (ln det M) , (30)

coming from differentiating the common identity log det M = Tr log M, one gets
1
2gµα∂νgαµ = 1√

|g|
∂ν

√
|g| (31)

bringing the expression to the desired form

∇µV µ = ∂µV µ + 1√
|g|

∂ν

(√
|g|
)

V ν = 1√
|g|

∂ν

(√
|g|V ν

)
. (32)

(b) The identity for the Laplacian trivially follows from setting V µ = ∇µf = gµν∂νf
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